\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI(OLD) - EXAMINATION - SUMMER 2019

Subject Code:160704
Date:18/05/2019

Subject Name: Theory Of Computation

Time:10:30 AM TO 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Write Principle of Mathematical Induction. Using Principle of Mathematical Induction, prove that for every $\mathrm{n} \geq 1$,

$$
\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}^{2}=\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1) \mathrm{6}
$$

(b) Define reflexivity, symmetry, and transitivity properties of relations. Consider the relation $\mathrm{R}=\{(1,2),(1,1),(2,1),(2,2),(3,2),(3,3)\}$ defined over $\{1,2,3\}$. Is it reflexive? Symmetric? Transitive? Justify each of your answers.
Q. 2 (a) Convert NFA- \wedge to NFA and DFA. Initial State: A, Final State : D

\mathbf{Q}	$\boldsymbol{\delta}(\mathbf{q}, \boldsymbol{\wedge})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{0})$	$\boldsymbol{\delta}(\mathbf{q}, \mathbf{1})$
A	$\{\mathrm{B}\}$	$\{\mathrm{A}\}$	ϕ
B	$\{\mathrm{D}\}$	$\{\mathrm{C}\}$	ϕ
C	ϕ	ϕ	$\{\mathrm{B}\}$
D	Φ	$\{\mathrm{D}\}$	ϕ

(b) Suppose that L_{1} and L_{2} are the subsets

Draw the FAs recognizing the following Languages:

- $\mathrm{L}_{1} \cap \mathrm{~L}_{2}$
- $\mathrm{L}_{1}-\mathrm{L}_{2}$

OR
(b) Define Pumping Lemma for Regular Languages. Use Pumping Lemma to show that the following languages are not regular.
$\mathrm{L}=\left\{0^{\mathrm{n}} 1^{2 \mathrm{n}} \mid \mathrm{n}>0\right\}$
$\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} \mid \mathrm{w} \in\{0,1\}^{*}\right\}$
Q. 3 (a) Define Ambiguous grammar. Write Unambiguous grammar for following grammar :

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}|(\mathrm{E}) \mid \mathrm{id}
$$

Derive string "id+id*id" using unambiguous grammar.
(b) Given the CFG G, find a CFG G' in Chomsky Normal form generating L(G) - \{ ^\}
$\mathrm{S} \rightarrow \mathrm{A}|\mathrm{B}| \mathrm{C}$
$A \rightarrow \mathrm{aAa} \mid \mathrm{B}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{bb}$
$\mathrm{C} \rightarrow \mathrm{aCaa} \mid \mathrm{D}$
$\mathrm{D} \rightarrow \mathrm{baD}|\mathrm{abD}|$ aa

OR

(a) Design Context Free Grammar for following Language :
$L=\left\{0^{i} 1^{\mathrm{j}} 0^{\mathrm{k}} \mid \mathrm{j}>\mathrm{i}+\mathrm{k}\right\}$
(b) Write Regular Expressions corresponding to each of the following subsets of
(i) The language of all strings in $\{0,1\}^{*}$ that containing at least two 0 's.
(ii) The language of all strings containing both 101 and 010 as substrings.
(iii) The language of all strings that do not end with 01 .
Q. 4 (a) Design PDA for the language $L=\left\{x \varepsilon\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$. 07
(b) Explain Cook's Theorer? 07

OR
(a) Design PDA for language $\mathrm{L}=\left\{\mathrm{xcx}^{\mathrm{r}} \mid \mathrm{x} \varepsilon\{\mathrm{a}, \mathrm{b}\}^{*}\right\} \quad 07$
(b) Write Short ngt on Any Two:
(i) The Primitive Recursion Function
(ii) SP and NP Completeness
(iii) Equivalence Relation
Q. 5 (a) Design Turing Machine(TM) to accept Palindrome over $\{a, b\}$, even as well as odd.
(b) Write Short note on Following: 07
(i) Halting Problem
(ii) Church Turing Thesis

OR

(a) Design Turing Machine to copy string. 07
(b) Explain Time Complexity and Space Complexity. 07

